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1 Introduction 

The impetus for this note is the need to understand coordinate transformations and how these relate 

to the OpticStudio® “Coordinate Break” model. 

2 Coordinate Transformation via Intrinsic Rotations of Coordinate Axes 

So called intrinsic rotations follow the moving or tilting coordinate system. 

Initially the global and local coordinate systems are one and the same. 

The local coordinate system is translated first to a pre-determined origin (this can be a decentration, 

for example); and then the axes are rotated in succession. 

The first rotation is around a convenient or appropriate local axis; followed by two more around the 

newly tilted local axes to reach a target local coordinate system. 

New point coordinates are relative to this local system. 

In this example, the local y- and z-axes are rotated around the local x-axis by ϴx ; then the new z-axis 

and original x-axis are rotated around the new y-axis by ϴy; and lastly, the new x- and y-axes are 

rotated around the new z-axis by ϴz . 

This is the most common transformation sequence required in optical systems modelling because 

rotationally symmetric component tilts are by convention around their local x- and y-axes. Less 

common components, such as gratings and cylindrical components, often require a z-rotation, the z-

axis being the optical axis by convention. 

The transformation in matrix form is: 

[
𝑥′

𝑦′

𝑧′

] = 𝑀𝑧(𝜃𝑧) ∙ 𝑀𝑦(𝜃𝑦) ∙ 𝑀𝑥(𝜃𝑥) [

𝑥 − 𝑥0

𝑦 − 𝑦0

𝑧 − 𝑧0

] 

where: 

𝑀𝑥(𝜃𝑥) = [
1 0 0
0 cos 𝜃𝑥 sin 𝜃𝑥

0 − sin 𝜃𝑥 cos 𝜃𝑥

] 

𝑀𝑦(𝜃𝑦) = [

cos 𝜃𝑦 0 −sin 𝜃𝑦

0 1 0
sin 𝜃𝑦 0 cos 𝜃𝑦

] 

𝑀𝑧(𝜃𝑧) = [
cos 𝜃𝑧 sin 𝜃𝑧 0

−sin 𝜃𝑧 cos 𝜃𝑧 0
0 0 1

] 

and: 

(𝑥0, 𝑦0, 𝑧0) = 𝑛𝑒𝑤 𝑙𝑜𝑐𝑎𝑙 𝑜𝑟𝑖𝑔𝑖𝑛 

The operation is not commutative, so must be used with care.  
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The operation can be reversed or “unwound” back to the global system: 

[
𝑥
𝑦
𝑧

] = 𝑀𝑥(−𝜃𝑥) ∙ 𝑀𝑦(−𝜃𝑦) ∙ 𝑀𝑧(−𝜃𝑧) [
𝑥′

𝑦′

𝑧′

] + [

𝑥0

𝑦0

𝑧0

] 

The initial transformation and its reverse can be described as X-Y’-Z” and Z–Y’–X” rotations 

respectively. 

3 Some Commentary on the OpticStudio® Notation 

The reverse coordinate transformation, with one exception, literally follows the ZEMAX/OpticStudio® 

Coordinate Break algorithm described in the older manuals (and the current Knowledge Base, see 

below) with the order flag set to zero. Thus, in the Lens Data Editor, x- and y-offsets are applied first, 

then a tilt is nominated around the local x-axis, then around the new local y-axis, then around the new 

local z-axis, thereby arriving at the nominated local coordinate system. 

The exception here is that the z-offset is also applied along with the x- and y-offsets rather than being 

applied as a “thickness” after the transformation. It is therefore a complete translation of the local 

coordinate system origin before rotations of the local coordinate system’s axes are applied. 

If the Coordinate Break order flag is set to 1 then the z-rotation is done first, offsets last. 

The derivation so far is for transforming the coordinates of fixed points in a global coordinate system 

into a rotated and displaced local coordinate system; and then “unwinding” it back to global. 

By contrast, ZEMAX/OpticStudio® uses a series of local coordinate systems for each component. 

Consequently, a Coordinate Break tilt will apply to the local coordinate system along with the function 

that defines the surface. 

The so-called “Rotation Matrix” is the transformation required to convert the local surface and 

function coordinates back into the global system and is exactly the same as the “unwinding” operation 

described above. 

So using the ZEMAX notation, the “rotation matrices” are just: 

𝑅𝑥(𝜃𝑥) = 𝑀𝑥(−𝜃𝑥) 

𝑅𝑦(𝜃𝑦) = 𝑀𝑦(−𝜃𝑦) 

𝑅𝑧(𝜃𝑧) = 𝑀𝑧(−𝜃𝑧) 

And so: 

[
𝑥
𝑦
𝑧

] = 𝑅𝑥(𝜃𝑥) ∙ 𝑅𝑦(𝜃𝑦) ∙ 𝑅𝑧(𝜃𝑧) [
𝑥′

𝑦′

𝑧′

] + [

𝑥0

𝑦0

𝑧0

] 

which on face value is consistent with the descriptions in the ZEMAX® manual and in the Knowledge 

Base. 

Somewhat conveniently, the respective columns of the resultant “rotation matrix” (the resultant 

matrix product) now become the components of the 3 local coordinate axes, which is very handy for 

display in the “System Prescription” in the “Global Vertex” section. 
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We can see this if we ignore the translation part of the transformation and rewrite the matrix product 

after invoking vector notation (bold characters represent vector quantities) and using some 

shorthand: 

 

[
𝑥
𝑦
𝑧

] = [𝒊′ 𝒋′ 𝒌′] [
𝑥′

𝑦′

𝑧′

] 

 

𝒊′, 𝒋′𝑎𝑛𝑑 𝒌′𝑎𝑟𝑒 𝑡ℎ𝑒 𝑙𝑜𝑐𝑎𝑙 𝑎𝑥𝑒𝑠 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 𝑔𝑙𝑜𝑏𝑎𝑙 𝑠𝑝𝑎𝑐𝑒. 

𝐸𝑥𝑝𝑎𝑛𝑑𝑖𝑛𝑔 𝑡ℎ𝑒 𝑐𝑜𝑙𝑢𝑚𝑛𝑠: 

 

[
𝑥
𝑦
𝑧

] = [

𝑖1 𝑗1 𝑘1

𝑖2 𝑗2 𝑘2

𝑖3 𝑗3 𝑘3

] [
𝑥′

𝑦′

𝑧′

] 

 

where the rows can be seen to be the components of the 3 local coordinate axes in the global x, y, and 

z directions respectively. And of course, the columns are the components of each respective axis in 

global space, or in other words, the normal 3D Cartesian basis vectors of the local space. 

The form of the individual rotation matrices is consistent with a series of so-called “extrinsic rotations” 

around the fixed global system axes. 

However, it should be clear by now that the distinction between intrinsic and extrinsic rotations 

depends very much on one’s point of view. 

In this context the transformations are simply “global-to-local” and vice versa. 

4 Some Commentary on the OpticStudio® Knowledge Base Article 

There is a Knowledge Base article (titled “Rotation Matrix and Tilt About X/Y/Z in OpticStudio”) on the 

OpticStudio® website which contains some ambiguity. On the plus side, the analysis of the given 

matrices is sound and obviously agrees with what the program calculates. 

However, under the heading “Intrinsic and Extrinsic Rotations”, it is stated that the reverse Z-Y’-X” 

rotation described above is an “extrinsic rotation”. In light of the above discussion, this is clearly 

ambiguous. On the spreadsheet, it looks like another series of intrinsic rotations with the angles of 

opposite sign, and in reverse order. However, as demonstrated above, the matrices are also consistent 

with a series of extrinsic rotations with angles of the same sign. Go figure! 

The two dot points which follow are also ambiguous, by the same reasoning. 

In closing, it is often much easier to visualise a series of intrinsic rotations in a convenient order unless 

the extrinsic rotation angles are clear multiples of 90 degrees. This can often be the case with non-

sequential objects. 
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5 Extracting Rotation Angles 

The rotation matrix product can be used to extract rotation angles, as per the knowledge base article. 

Thus, for order flag “0”: 

𝑅𝑥(𝜃𝑥) ∙ 𝑅𝑦(𝜃𝑦) ∙ 𝑅𝑧(𝜃𝑧)

= [

cos 𝜃𝑦 cos 𝜃𝑧 − cos 𝜃𝑦 sin 𝜃𝑧 sin 𝜃𝑦

cos 𝜃𝑥 sin 𝜃𝑧 + sin 𝜃𝑥 sin 𝜃𝑦 cos 𝜃𝑧 cos 𝜃𝑥 cos 𝜃𝑧 − sin 𝜃𝑥 sin 𝜃𝑦 sin 𝜃𝑧 − sin 𝜃𝑥 cos 𝜃𝑦

sin 𝜃𝑥 sin 𝜃𝑧 − cos 𝜃𝑥 sin 𝜃𝑦 cos 𝜃𝑧 sin 𝜃𝑥 cos 𝜃𝑧 + cos 𝜃𝑥 sin 𝜃𝑦 sin 𝜃𝑧 cos 𝜃𝑥 cos 𝜃𝑦

] 

We can declare a function: 

𝐴𝑟𝑐𝑇𝑎𝑛2(𝑌, 𝑋) = tan−1 (
𝑌

𝑋
) = 𝜃 

𝑤𝑖𝑡ℎ 𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 − 𝜋 < 𝜃 ≤ 𝜋 

Thus: 

𝜃𝑥 = 𝐴𝑟𝑐𝑇𝑎𝑛2(−𝑅23, 𝑅33) 

𝜃𝑦 = sin−1(𝑅13) , −
𝜋

2
≤ 𝜃𝑦 ≤

𝜋

2
 

𝜃𝑧 = 𝐴𝑟𝑐𝑇𝑎𝑛2(−𝑅12, 𝑅11) 

following the OpticStudio® notation. 

The rotation matrix product can also be used to extract the [different] rotation angles that would be 

required if the order flag is non-zero. Of course, the order of the matrices is also reversed. 

Thus: 

𝑅𝑧(𝜃𝑧) ∙ 𝑅𝑦(𝜃𝑦) ∙ 𝑅𝑥(𝜃𝑥)

= [

cos 𝜃𝑦 cos 𝜃𝑧 − cos 𝜃𝑥 sin 𝜃𝑧 + sin 𝜃𝑥 sin 𝜃𝑦 cos 𝜃𝑧 sin 𝜃𝑥 sin 𝜃𝑧 + cos 𝜃𝑥 sin 𝜃𝑦 cos 𝜃𝑧

cos 𝜃𝑦 sin 𝜃𝑧 cos 𝜃𝑥 cos 𝜃𝑧 + sin 𝜃𝑥 sin 𝜃𝑦 sin 𝜃𝑧 −sin 𝜃𝑥 cos 𝜃𝑧 + cos 𝜃𝑥 sin 𝜃𝑦 sin 𝜃𝑧

− sin 𝜃𝑦 sin 𝜃𝑥 cos 𝜃𝑦 cos 𝜃𝑥 cos 𝜃𝑦

] 

and 

𝜃𝑥 = 𝐴𝑟𝑐𝑇𝑎𝑛2(𝑅32, 𝑅33) 

𝜃𝑦 = sin−1(−𝑅31) 

𝜃𝑧 = 𝐴𝑟𝑐𝑇𝑎𝑛2(𝑅21, 𝑅11) 

The symmetry between the 2 matrix products is clear – indeed, they are the transpose of each other, 

with angles of opposite sign. Of course, the extracted angles will not be the same. 

6 Disclaimer 

Unpacking all this has been very helpful for me. Any errors spotted are all mine. The reader should 

verify that the above methods work for his or her particular situation. 

Please email any suggestions and errors directly to me. 

Thanks for reading and I hope it has been helpful. 


