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Background 

The motivation for this note was to formulate a method for generating a circular 2-dimensional random 

ray distribution (field points in star apace) for a seeing simulator, among others. 

This removes the need for intensity weighting and means that throughput calculations are simply a matter 

of counting transmitted rays. 

Random rays with a uniform intensity distribution can also be generated using the same method. 

Theory 

Generating a uniform random ray distribution over a rectangle is trivial. The differential area is given by: 

𝑑𝐴 = 𝑑𝑥 ∙ 𝑑𝑦 

And uniform random points can be drawn from the respective variable domains. This is often described 

as “point-picking”. 

We seek to reduce any point picking problem to a uniform distribution in a rectangular domain, thereby 

rendering it trivial. 

Circular Area 

For a circular area, and switching to polar coordinates with conventional notation, the differential area 

(sometimes called the “polar rectangle”) becomes: 

𝑑𝐴 = ρ ∙ 𝑑𝜌 ∙ 𝑑𝜃 

We can transform variables to a rectangular domain [where u is the uniform random variable] thus: 

𝑑𝐴 = 𝑑𝑢 ∙ 𝑑𝜃,    𝑤ℎ𝑒𝑟𝑒 

𝑑𝑢 = 𝜌 ∙ 𝑑𝜌 

whence 

𝑢 =  
𝑟2

2
 

after integrating from 0 to r. For convenience, we can rescale to the unit circle (as per ref [1]) and draw 

random points from the domains of (𝑢, 𝜃), to find: 

𝑟 = √𝑢  , (𝑢: [0,1] → 𝑟: [0,1]) , (𝜃: [0,2𝜋]) 

And rescale and convert to rectangular coordinates in the normal way. 
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Example: Seeing Simulation 

The normalized 2D Moffat function for an atmospheric seeing profile looks like: 

𝐼(𝜌) =
2(𝛽 − 1)

2𝜋𝛼2
(1 +

𝜌2

𝛼2
)

−𝛽

 

𝑤ℎ𝑒𝑟𝑒 𝜌 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑎𝑑𝑖𝑎𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 𝑎𝑛𝑑: 

𝛼 =
𝑓𝑤ℎ𝑚

2√2
1
𝛽 − 1

 

This is a modified Lorentzian function, sometimes described as a “softened Gaussian”. The radial 

parameter is usually measured in arcseconds in star space. 

Normally: 

𝛽 = 4 

The differential area is now weighted by the intensity: 

𝑑𝐴 = ρ ∙ I(𝜌) ∙ 𝑑𝜌 ∙ 𝑑𝜃 

Transform variables, as before, to a rectangular domain, and ignoring the already rectangular coordinate, 

ϴ (which cancels the 2π in the denominator) : 

𝑑𝑢 = ρ ∙ I(𝜌) ∙ 𝑑𝜌 

Whence: 

𝑢 =
2(𝛽 − 1)

𝛼2
(1 +

𝜌2

𝛼2
)

−𝛽+1
𝛼2

2(−𝛽 + 1)
= − (1 +

𝜌2

𝛼2
)

−𝛽+1

 

And so: 

𝑢 =  [1 − (1 +
𝑟2

𝛼2
)

−𝛽+1

] 

after integrating from 0 to r. In other words, at what value of r is proportion u of the seeing energy 

contained? 

Thus: 

𝑢 =  [1 − (1 +
𝑟2

𝛼2
)

−𝛽+1

] ,      𝑢: [0,1] → 𝑟: [0, ∞] 

And so, the uniform random variable, 𝑢 , can be mapped to the radial coordinate, 𝑟 , weighted by an 

intensity distribution. Solving for 𝑟 : 

𝑟 = 𝛼√(1 − 𝑢)
1

1−𝛽 − 1  ,   0 ≤ 𝑢 < 1 
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We just have to be careful and catch the exception should the random variable ever evaluate to exactly 

unity. 

The conversion to rectangular coordinates (field points in star space) proceeds as before. 

We can test this with around 100,000 field points over a seeing disc. Field points can be counted, binned, 

and compared with the theoretical distribution. 

Over about 4.5x the seeing FWHM, and using 21 x 21 bins, the convergence is uncanny. 

Example: Gaussian Beam 

The 2D intensity profile of a circular Gaussian beam at the beam waist is given by: 

𝐼(𝜔) =
2

𝜋𝜔0
2 𝑒

−2(
𝜔

𝜔0
)

2

 

𝑤ℎ𝑒𝑟𝑒 𝜔 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑎𝑑𝑖𝑎𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 𝑎𝑛𝑑: 

𝜔0 = 𝑏𝑒𝑎𝑚 𝑤𝑎𝑖𝑠𝑡 𝑟𝑎𝑑𝑖𝑢𝑠 𝑎𝑡 𝑒−2 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 

We would use this profile, for example, to model rays from a sample illuminated by a focussed laser 

beam. 

The differential area is now weighted by the intensity: 

𝑑𝐴 = ω ∙ I(𝜔) ∙ 𝑑𝜔 ∙ 𝑑𝜃 

Transform variables, as before, to a rectangular domain: 

𝑑𝑢 = ω ∙ I(𝜔) ∙ 𝑑𝜔 

And after losing the π in the denominator and ignoring the constant of integration: 

𝑢 = −𝑒
−2(

𝜔
𝜔0

)
2

 

And so: 

𝑢 =  [1 − 𝑒
−2(

𝑟
𝜔0

)
2

] ,      𝑢: [0,1] → 𝑟: [0, ∞] 

after integrating from 0 to r as before. After rearranging: 

𝑟 = 𝜔0√−
1

2
𝑙𝑛(1 − 𝑢),   0 ≤ 𝑢 < 1 

As before, we have to catch the exception should the random variable ever evaluate to exactly unity. 

More often than not the illuminated area is an ellipse with a double-waisted profile looking like: 

𝐼(𝑥, 𝑦) =
2

𝜋𝜔𝑥𝜔𝑦
𝑒

−2[(
𝑥

𝜔𝑥
)

2
+(

𝑦
𝜔𝑦

)
2

]
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Integrating this to find the relationship between random variables u and v, and x and y, is not quite so 

straightforward and of course means inverting erf(x) and erf(y), which can get a little fiddly. 

The easiest way around this is to derive the random points for the circular distribution and then scale the 

x or y-coordinate (depending on the direction of the ellipticity) after the conversion to rectangular 

coordinates.  

Similar testing shows nice congruence with both the elliptical and circular intensity profiles. 

Hemispherical and Spherical Surfaces 

In spherical coordinates and using conventional (mathematical) notation, on a unit sphere, the 

differential area is: 

𝑑𝐴 = sin 𝜙 ∙ 𝑑𝜙 ∙ 𝑑𝜃 

Transform to a rectangular domain, ignoring ϴ as before: 

𝑑𝑢 = sin 𝜙 ∙ 𝑑𝜙 

Whence, for a hemisphere: 

𝑢 = 1 − cos 𝜙 , 𝑢: [0,1] → 𝜙: [0, 𝜋 2⁄ ] 

cos 𝜙 = 1 − 𝑢 

sin 𝜙 = √𝑢(2 − 𝑢) 

And, for a sphere: 

𝑢 =
1 − cos 𝜙

2
 , 𝑢: [0,1] → 𝜙: [0, 𝜋] 

cos 𝜙 = 1 − 2𝑢 

sin 𝜙 = 2√𝑢(1 − 𝑢) 

Note that the constants of integration and the scale factors have been chosen to align the domains in a 

logical way. And of course, for a sphere of arbitrary radius: 

𝑥 = 𝑟 sin 𝜙 cos 𝜃 

𝑦 = 𝑟 sin 𝜙 sin 𝜃 

𝑧 = 𝑟 cos 𝜙 

On a unit sphere the coordinates would be simply direction cosines. 

Example: LED Ray Distribution 

Hemispherical point picking is especially useful for generating random rays from a point source or an LED 

using the published ray intensity weightings as a function of the polar angle.  

We can weight the differential area as before, as a function of the polar angle: 

𝑑𝑢 = sin 𝜙 ∙ I(𝜙) ∙ 𝑑𝜙 
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𝑰(𝝓) can be approximated by several types of basis functions but the above resulting product should 

preferably be integrable. One would then use Newton’s method to solve for 𝝓 starting at a solve for the 

first term, if the approximation is a series. 

These techniques for an LED source are yet to be tested. 

Disclaimer 

I’m not making any claims for originality and pure mathematical correctness, but if something works, I’ll 

use it, and hope to help others. 

As always, if you have a problem or constructive criticism, please drop me an email. 
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