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1 Introduction 

The impetus for this note is the need to measure the profile of an aspheric surface and find the vertex 

curvature. 

Specifically, point clouds of the asphere are generated by a ROMER Arm. It is understood that even 

though the point clouds can be generated with great precision; the surface cannot be centred exactly, 

or have zero tilt, so that these parameters also need to be found. 

Another note (“Coordinate System Alignment for Optical Surface Modelling”) describes the 

geometrical transformations that are required and how to do them. 

The unknown parameters are not an orthonormal set and are vastly outnumbered by the data point 

population, so no analytic solution is feasible. Thus, optimisation methods must be used. 

2 ROMER Measurement Ball Geometry 

There are 2 coordinate systems in play. 

In the following sketch the ROMER reports point S by projecting a radius from the centre of the [small] 

measurement ball to the virtual centre of curvature (CoC) of the reference sphere in the global 

coordinate system [machine space]. S is transformed to S’ in the local coordinate system [local space] 

of the aspheric surface. 

The measurement ball is in contact with the aspheric surface at an unknown point A, in local space. 

We need to calculate the vector S’A via iteration; the first of which will define S’A1. 

The normal vector to the ball surface at S is simply the line joining S with the CoC. It passes through 

the centre of the ball (point C in the machine space, C’ in the local space) by definition. This vector is 

transformed into the local space, normalized, and translated, forming the vector C’P2 in the sketch. 

For the first iteration, the normal to the asphere is calculated at the X and Y coordinates of S’ to form 

S”P0. It is translated so as to pass through C’, and then normalised to form the unit vector C’P1. 

Then, by similar triangles: 

𝑆′𝐴1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑟 ∙ 𝑃1𝑃2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

The normal to the asphere is then calculated at the X and Y coordinates of A1 and the process is 

repeated until A is approached to the desired precision. 2 - 3 iterations are usually sufficient to attain 

a precision of <1E-6 mm. 
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3 Fitting a Measurement Point Cloud 

There follows a DELPHI/PASCAL code-kernel for matching the vertex curvature of an aspheric profile 

with a point cloud generated by measurement instrumentation. Note that there is no z-rotation; but 

in principle this would be straightforward to include. 

The variables passed to the optimiser are the origin translations, theta_x, theta_y and the vertex 

curvature, c. 

The final surface is quite close to nominal so there is no real advantage to be gained by allowing the 

aspheric coefficients and the conic constant to be used by the optimiser. We are only interested in the 

vertex curvature. 

The point cloud is also passed to the optimiser as the fixed reference. 

It has been observed that when the origin x- and y-translations are included in the optimiser’s variable 

space, the global minimum is rather broad and the end result is not reproducible from random inputs 

of the optimiser variables. It is often better to run the optimiser a few times and obtain best guesses 

of the translations. These can then be set by hand and “walked in” to the global minimum. It is 

observed that minima achieved in this manner are highly reproducible. 

Note that the code kernel returns a figure of merit for the entire point cloud. 

In this instance the code kernel was used with a downhill SIMPLEX optimiser. But in principle, any 

suitable optimiser could be deployed. 

4 Measurement Scatter and Reliability 

The figure below shows a typical measurement cloud scatter from a large concave aspheric surface. 

A second measurement cloud produced a very similar scatter. 

The RMS scatter in both plots was around 0.0065 mm. 

Putting aside the magnitude of the scatter for the moment it is quite clear that there is very little 

systematic error, which validates the decision to exclude the conic constant and aspheric coefficients 

from the optimisation. 

Now if we consider the “outer reaches” of the surface, so to speak, it is clear that this ROMER ARM 

might be struggling a little at the limits of its measurement range. 

Notwithstanding this, the morphological similarity of 2 complete sets of measurements gives a pretty 

high level of confidence in the calculated vertex RoC. 
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// Point cloud data structure and functions 
 
TYPE 
  TSurfData = class 
    Public 
      CMax : INTEGER ; // number of data points 
      x0, y0, z0, theta_x, theta_y, TErr: DOUBLE ; 
      c, sgn_c, cc, a4, a6: DOUBLE; // aspheric coefficients 
// reported data points cX, cY, cZ, and calculated variables 
      cX, cY, cZ, h, vZ, dvZ: ARRAY[1..1000] OF DOUBLE ; 
// Romer reference sphere CoC in global system 
      x_c, y_c, z_c: DOUBLE; 
// reference sphere & measurement ball curv/radii 
      c_r, r_r, R_b: DOUBLE; 
    FUNCTION CalcSurf(): DOUBLE; 
    PROCEDURE Load3D_PCData(FileName: STRING); 
    Private 
  end; 
//======================== 
FUNCTION TSurfData.CalcSurf(): DOUBLE; 
 
VAR 
  J: INTEGER; 
// intermediates used frequently 
  sin_theta_x, cos_theta_x, sin_theta_y, cos_theta_y, y_int: DOUBLE; 
// Romer reported points after translation [only] into local system 
  x_s, y_s, z_s: DOUBLE; 
// intermediates used more than once 
  denom, h_2, h_4: DOUBLE; 
// reference sphere normal components from reported coordinates 
  n_s_i, n_s_j, n_s_k: DOUBLE; 
// fully transformed reported point and normal to Romer sphere 
  s_s, n_s: Vector; 
// normal to asphere, correction vector, point on asphere 
  n_a, d_a, s_a: Vector; 
// successive values of asphere parameter "h" or "u" 
  h_old, h_new: DOUBLE; 
 
BEGIN 
// intermediates used more than once 
  sin_theta_x := SIN(theta_x); 
  cos_theta_x := COS(theta_x); 
  sin_theta_y := SIN(theta_y); 
  cos_theta_y := COS(theta_y); 
 
  sgn_c := Sign(c); 
// initialize the figure of merit 
  TErr := 0; 
 
  for J := 1 to CMax do begin 
// intermediates 
    x_s := cX[J]; 
    y_s := cY[J]; 
    z_s := cZ[J]; 
// reference sphere normal points towards CoC of reference sphere 
    n_s_i := x_c - x_s; 
    n_s_j := y_c - y_s; 
    n_s_k := z_c - z_s; 
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// translate 
    x_s := x_s - x0; 
    y_s := y_s - y0; 
    z_s := z_s - z0; 
 
// rotate reported point and normal into local system 
 
{ Comment: algortihm is... 
| x' |   | cos_theta_y   0  -sin_theta_y ||  1          0             0   || x | 
| y' | = |      0        1        0      ||  0   cos_theta_x   sin_theta_x|| y | 
| z' |   | sin_theta_y   0   cos_theta_y ||  0  -sin_theta_x   cos_theta_x|| z | 
  End comment} 
 
// transform coordinates 
 
// intermediate used more than once 
    y_int := -y_s*sin_theta_x + z_s*cos_theta_x; 
 
    s_s[1] := x_s*cos_theta_y - y_int*sin_theta_y; 
    s_s[2] := y_s*cos_theta_x + z_s*sin_theta_x; 
    s_s[3] := x_s*sin_theta_y + y_int*cos_theta_y; 
 
// transform normal 
 
// intermediate used more than once 
    y_int := -n_s_j*sin_theta_x + n_s_k*cos_theta_x; 
 
    n_s[1] := n_s_i*cos_theta_y - y_int*sin_theta_y; 
    n_s[2] := n_s_j*cos_theta_x + n_s_k*sin_theta_x; 
    n_s[3] := n_s_i*sin_theta_y + y_int*cos_theta_y; 
// Normalize [make unit normal vector] 
    NormalizeVector(n_s,n_s); 
 
// calculate asphere normal at s_a = s_s first, then iterate 
    s_a := s_s; 
    h_new := 0; 
 
    REPEAT 
      h_old := h_new; 
 
      h_2 := s_a[1]*s_a[1] + s_a[2]*s_a[2]; 
      h_new := SQRT(h_2); 
      h_4 := h_2*h_2; 
 
      denom := SQRT(1 - (1 + cc)*c*c*h_2); 
      n_a[1] := -sgn_c*(c*s_a[1]/denom + 4*a4*h_2*s_a[1] + 6*a6*h_4*s_a[1]); 
      n_a[2] := -sgn_c*(c*s_a[2]/denom + 4*a4*h_2*s_a[2] + 6*a6*h_4*s_a[2]); 
      n_a[3] := sgn_c; 
// Normalize 
      NormalizeVector(n_a,n_a); 
// Subtract the 2 normal vectors 
      VSub(n_s,n_a,d_a); 
// Scale by radius of ball 
      VMul(R_b,d_a,d_a); 
// Add to s_s, new s_a 
      VAdd(s_s,d_a,s_a); 
    UNTIL (h_new - h_old) <= 1E-6; 
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// h[J] for scatter plots 
    h[J] := h_new; 
// calculate sag from transformed and processed coordinates 
    vZ[J] := c*h_2/(1 + SQRT(1 - (1 + cc)*c*c*h_2)) + a4*h_4 + a6*h_2*h_4; 
// calculate difference between measured and calculated sag 
    dvZ[J] := s_a[3] - vZ[J]; 
// this quantity squared and summed 
    TErr := TErr + SQR(dvZ[J]); 
  end; 
// this quantity (RMS) minimised by the optimiser 
  CalcSurf := SQRT(TErr/CMax); 
END ; 

 


