

PRIME OPTICS

Telephone : +61-7-5442 8813

SMS : +61-429-02 8831

Contact : Damien Jones

Local Time : UT + 10

EMail : damien@primeoptics.com.au

Web : www.primeoptics.com.au

Extracting Asphere Vertex

Radius of Curvature from

ROMER Arm Measurement Point Cloud

2021 July 29

mailto:damien@primeoptics.com.au

PRIME OPTICS / ROMER Arm Measurements of Aspheres 1

1 Introduction

The impetus for this note is the need to measure the profile of an aspheric surface and find the vertex

curvature.

Specifically, point clouds of the asphere are generated by a ROMER Arm. It is understood that even

though the point clouds can be generated with great precision; the surface cannot be centred exactly,

or have zero tilt, so that these parameters also need to be found.

Another note (“Coordinate System Alignment for Optical Surface Modelling”) describes the

geometrical transformations that are required and how to do them.

The unknown parameters are not an orthonormal set and are vastly outnumbered by the data point

population, so no analytic solution is feasible. Thus, optimisation methods must be used.

2 ROMER Measurement Ball Geometry

There are 2 coordinate systems in play.

In the following sketch the ROMER reports point S by projecting a radius from the centre of the [small]

measurement ball to the virtual centre of curvature (CoC) of the reference sphere in the global

coordinate system [machine space]. S is transformed to S’ in the local coordinate system [local space]

of the aspheric surface.

The measurement ball is in contact with the aspheric surface at an unknown point A, in local space.

We need to calculate the vector S’A via iteration; the first of which will define S’A1.

The normal vector to the ball surface at S is simply the line joining S with the CoC. It passes through

the centre of the ball (point C in the machine space, C’ in the local space) by definition. This vector is

transformed into the local space, normalized, and translated, forming the vector C’P2 in the sketch.

For the first iteration, the normal to the asphere is calculated at the X and Y coordinates of S’ to form

S”P0. It is translated so as to pass through C’, and then normalised to form the unit vector C’P1.

Then, by similar triangles:

𝑆′𝐴1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑟 ∙ 𝑃1𝑃2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

The normal to the asphere is then calculated at the X and Y coordinates of A1 and the process is

repeated until A is approached to the desired precision. 2 - 3 iterations are usually sufficient to attain

a precision of <1E-6 mm.

PRIME OPTICS / ROMER Arm Measurements of Aspheres 2

to CoC of reference sphere

C’

S’

A

A1

unit vectors

P1
P2

P0

tangent to virtual reference sphere

tangents to asphere at

S” and A1 respectively

r
angle exaggerated for clarity,

in reality <0.25°

S”

PRIME OPTICS / ROMER Arm Measurements of Aspheres 3

3 Fitting a Measurement Point Cloud

There follows a DELPHI/PASCAL code-kernel for matching the vertex curvature of an aspheric profile

with a point cloud generated by measurement instrumentation. Note that there is no z-rotation; but

in principle this would be straightforward to include.

The variables passed to the optimiser are the origin translations, theta_x, theta_y and the vertex

curvature, c.

The final surface is quite close to nominal so there is no real advantage to be gained by allowing the

aspheric coefficients and the conic constant to be used by the optimiser. We are only interested in the

vertex curvature.

The point cloud is also passed to the optimiser as the fixed reference.

It has been observed that when the origin x- and y-translations are included in the optimiser’s variable

space, the global minimum is rather broad and the end result is not reproducible from random inputs

of the optimiser variables. It is often better to run the optimiser a few times and obtain best guesses

of the translations. These can then be set by hand and “walked in” to the global minimum. It is

observed that minima achieved in this manner are highly reproducible.

Note that the code kernel returns a figure of merit for the entire point cloud.

In this instance the code kernel was used with a downhill SIMPLEX optimiser. But in principle, any

suitable optimiser could be deployed.

4 Measurement Scatter and Reliability

The figure below shows a typical measurement cloud scatter from a large concave aspheric surface.

A second measurement cloud produced a very similar scatter.

The RMS scatter in both plots was around 0.0065 mm.

Putting aside the magnitude of the scatter for the moment it is quite clear that there is very little

systematic error, which validates the decision to exclude the conic constant and aspheric coefficients

from the optimisation.

Now if we consider the “outer reaches” of the surface, so to speak, it is clear that this ROMER ARM

might be struggling a little at the limits of its measurement range.

Notwithstanding this, the morphological similarity of 2 complete sets of measurements gives a pretty

high level of confidence in the calculated vertex RoC.

PRIME OPTICS / ROMER Arm Measurements of Aspheres 4

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

0 50 100 150 200 250 300 350 400 450 500

Er
ro

r,
 m

m

Radial distance

Typical ROMER measurement scatter

PRIME OPTICS / ROMER Arm Measurements of Aspheres 5

// Point cloud data structure and functions

TYPE
 TSurfData = class
 Public
 CMax : INTEGER ; // number of data points
 x0, y0, z0, theta_x, theta_y, TErr: DOUBLE ;
 c, sgn_c, cc, a4, a6: DOUBLE; // aspheric coefficients
// reported data points cX, cY, cZ, and calculated variables
 cX, cY, cZ, h, vZ, dvZ: ARRAY[1..1000] OF DOUBLE ;
// Romer reference sphere CoC in global system
 x_c, y_c, z_c: DOUBLE;
// reference sphere & measurement ball curv/radii
 c_r, r_r, R_b: DOUBLE;
 FUNCTION CalcSurf(): DOUBLE;
 PROCEDURE Load3D_PCData(FileName: STRING);
 Private
 end;
//========================
FUNCTION TSurfData.CalcSurf(): DOUBLE;

VAR
 J: INTEGER;
// intermediates used frequently
 sin_theta_x, cos_theta_x, sin_theta_y, cos_theta_y, y_int: DOUBLE;
// Romer reported points after translation [only] into local system
 x_s, y_s, z_s: DOUBLE;
// intermediates used more than once
 denom, h_2, h_4: DOUBLE;
// reference sphere normal components from reported coordinates
 n_s_i, n_s_j, n_s_k: DOUBLE;
// fully transformed reported point and normal to Romer sphere
 s_s, n_s: Vector;
// normal to asphere, correction vector, point on asphere
 n_a, d_a, s_a: Vector;
// successive values of asphere parameter "h" or "u"
 h_old, h_new: DOUBLE;

BEGIN
// intermediates used more than once
 sin_theta_x := SIN(theta_x);
 cos_theta_x := COS(theta_x);
 sin_theta_y := SIN(theta_y);
 cos_theta_y := COS(theta_y);

 sgn_c := Sign(c);
// initialize the figure of merit
 TErr := 0;

 for J := 1 to CMax do begin
// intermediates
 x_s := cX[J];
 y_s := cY[J];
 z_s := cZ[J];
// reference sphere normal points towards CoC of reference sphere
 n_s_i := x_c - x_s;
 n_s_j := y_c - y_s;
 n_s_k := z_c - z_s;

PRIME OPTICS / ROMER Arm Measurements of Aspheres 6

// translate
 x_s := x_s - x0;
 y_s := y_s - y0;
 z_s := z_s - z0;

// rotate reported point and normal into local system

{ Comment: algortihm is...
x'		cos_theta_y 0 -sin_theta_y		1 0 0		x
y'	=	0 1 0		0 cos_theta_x sin_theta_x		y
z'		sin_theta_y 0 cos_theta_y		0 -sin_theta_x cos_theta_x		z
 End comment}

// transform coordinates

// intermediate used more than once
 y_int := -y_s*sin_theta_x + z_s*cos_theta_x;

 s_s[1] := x_s*cos_theta_y - y_int*sin_theta_y;
 s_s[2] := y_s*cos_theta_x + z_s*sin_theta_x;
 s_s[3] := x_s*sin_theta_y + y_int*cos_theta_y;

// transform normal

// intermediate used more than once
 y_int := -n_s_j*sin_theta_x + n_s_k*cos_theta_x;

 n_s[1] := n_s_i*cos_theta_y - y_int*sin_theta_y;
 n_s[2] := n_s_j*cos_theta_x + n_s_k*sin_theta_x;
 n_s[3] := n_s_i*sin_theta_y + y_int*cos_theta_y;
// Normalize [make unit normal vector]
 NormalizeVector(n_s,n_s);

// calculate asphere normal at s_a = s_s first, then iterate
 s_a := s_s;
 h_new := 0;

 REPEAT
 h_old := h_new;

 h_2 := s_a[1]*s_a[1] + s_a[2]*s_a[2];
 h_new := SQRT(h_2);
 h_4 := h_2*h_2;

 denom := SQRT(1 - (1 + cc)*c*c*h_2);
 n_a[1] := -sgn_c*(c*s_a[1]/denom + 4*a4*h_2*s_a[1] + 6*a6*h_4*s_a[1]);
 n_a[2] := -sgn_c*(c*s_a[2]/denom + 4*a4*h_2*s_a[2] + 6*a6*h_4*s_a[2]);
 n_a[3] := sgn_c;
// Normalize
 NormalizeVector(n_a,n_a);
// Subtract the 2 normal vectors
 VSub(n_s,n_a,d_a);
// Scale by radius of ball
 VMul(R_b,d_a,d_a);
// Add to s_s, new s_a
 VAdd(s_s,d_a,s_a);
 UNTIL (h_new - h_old) <= 1E-6;

PRIME OPTICS / ROMER Arm Measurements of Aspheres 7

// h[J] for scatter plots
 h[J] := h_new;
// calculate sag from transformed and processed coordinates
 vZ[J] := c*h_2/(1 + SQRT(1 - (1 + cc)*c*c*h_2)) + a4*h_4 + a6*h_2*h_4;
// calculate difference between measured and calculated sag
 dvZ[J] := s_a[3] - vZ[J];
// this quantity squared and summed
 TErr := TErr + SQR(dvZ[J]);
 end;
// this quantity (RMS) minimised by the optimiser
 CalcSurf := SQRT(TErr/CMax);
END ;

